
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| 标题 |
| 基于改进RBF神经网络的产业损害预警指数预报(20 卷) |
| 英文标题 |
| Forecast of Industry Injury Early-warning Index based on improved RBF Neural Networks |
| 摘要 |
| 为了有效的保护产业安全,产业损害预警指数的预报成为重要的研究方向。针对这种非线性的时间序列和产业损害预警系统的应用特点,本文对RBF网络的学习算法进行了一定的改进,提高了预测结果的稳定性。根据实验仿真结果显示,该模型优于传统使用的分析方法,为各生产行业的生产 |
| 作者 |
| 新闻作者:郭恒川,任 波 |
| 关键字 |